Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Signal Transduct Target Ther ; 8(1): 194, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2317960

ABSTRACT

Viral infection in respiratory tract usually leads to cell death, impairing respiratory function to cause severe disease. However, the diversity of clinical manifestations of SARS-CoV-2 infection increases the complexity and difficulty of viral infection prevention, and especially the high-frequency asymptomatic infection increases the risk of virus transmission. Studying how SARS-CoV-2 affects apoptotic pathway may help to understand the pathological process of its infection. Here, we uncovered SARS-CoV-2 imployed a distinct anti-apoptotic mechanism via its N protein. We found SARS-CoV-2 virus-like particles (trVLP) suppressed cell apoptosis, but the trVLP lacking N protein didn't. Further study verified that N protein repressed cell apoptosis in cultured cells, human lung organoids and mice. Mechanistically, N protein specifically interacted with anti-apoptotic protein MCL-1, and recruited a deubiquitinating enzyme USP15 to remove the K63-linked ubiquitination of MCL-1, which stabilized this protein and promoted it to hijack Bak in mitochondria. Importantly, N protein promoted the replications of IAV, DENV and ZIKV, and exacerbated death of IAV-infected mice, all of which could be blocked by a MCL-1 specific inhibitor, S63845. Altogether, we identifed a distinct anti-apoptotic function of the N protein, through which it promoted viral replication. These may explain how SARS-CoV-2 effectively replicates in asymptomatic individuals without cuasing respiratory dysfunction, and indicate a risk of enhanced coinfection with other viruses. We anticipate that abrogating the N/MCL-1-dominated apoptosis repression is conducive to the treatments of SARS-CoV-2 infection as well as coinfections with other viruses.


Subject(s)
COVID-19 , Coinfection , Zika Virus Infection , Zika Virus , Humans , Animals , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , SARS-CoV-2 , COVID-19/genetics , Virus Replication/genetics , Ubiquitin-Specific Proteases
2.
J Med Virol ; 95(4): e28751, 2023 04.
Article in English | MEDLINE | ID: covidwho-2300487

ABSTRACT

In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.


Subject(s)
COVID-19 , Humans , Cytokines , SARS-CoV-2 , Cytokine Release Syndrome , Interleukin-1
3.
Front Cell Infect Microbiol ; 13: 1098712, 2023.
Article in English | MEDLINE | ID: covidwho-2298809

ABSTRACT

In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality. The underlying mechanisms may involve mitochondrial dysfunction, abnormal activation of the cGAS-STING pathway and NLRP3 inflammasome, the role of pre-activated macrophages and over-recruited immune cells, and accumulation of immune cells with trained immunity. Thus, senescence-targeted drugs were shown to have positive effects on the treatment of viral infectious diseases in the elderly, which has received great attention and extensive research. Therefore, this review focused on the relationship between senescence and viral infection, as well as the significance of senotherapeutics for the treatment of viral infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Humans , Aged , Senotherapeutics , Signal Transduction , Pandemics
5.
Viruses ; 13(1)2020 12 30.
Article in English | MEDLINE | ID: covidwho-1389523

ABSTRACT

SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-ß) production. N protein repressed IFN-ß production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-ß production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-ß response through targeting the initial step, potentially the cellular PRR-RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-ß production by interfering with RIG-I.


Subject(s)
COVID-19/immunology , DEAD Box Protein 58/metabolism , Interferon-beta/metabolism , Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism , A549 Cells , Animals , DEAD Box Protein 58/genetics , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Protein Interaction Domains and Motifs , Receptors, Immunologic , Signal Transduction
6.
Signal Transduct Target Ther ; 6(1): 308, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1364579

ABSTRACT

Cytokine storm induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a major pathological feature of Coronavirus Disease 2019 (COVID-19) and a crucial determinant in COVID-19 prognosis. Understanding the mechanism underlying the SARS-CoV-2-induced cytokine storm is critical for COVID-19 control. Here, we identify that SARS-CoV-2 ORF3a and host hypoxia-inducible factor-1α (HIF-1α) play key roles in the virus infection and pro-inflammatory responses. RNA sequencing shows that HIF-1α signaling, immune response, and metabolism pathways are dysregulated in COVID-19 patients. Clinical analyses indicate that HIF-1α production, inflammatory responses, and high mortalities occurr in elderly patients. HIF-1α and pro-inflammatory cytokines are elicited in patients and infected cells. Interestingly, SARS-CoV-2 ORF3a induces mitochondrial damage and Mito-ROS production to promote HIF-1α expression, which subsequently facilitates SARS-CoV-2 infection and cytokines production. Notably, HIF-1α also broadly promotes the infection of other viruses. Collectively, during SARS-CoV-2 infection, ORF3a induces HIF-1α, which in turn aggravates viral infection and inflammatory responses. Therefore, HIF-1α plays an important role in promoting SARS-CoV-2 infection and inducing pro-inflammatory responses to COVID-19.


Subject(s)
COVID-19/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , SARS-CoV-2/metabolism , Signal Transduction , Viroporin Proteins/metabolism , A549 Cells , Animals , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Mitochondria/pathology , RNA-Seq , THP-1 Cells , Vero Cells
7.
Nat Commun ; 12(1): 4664, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338538

ABSTRACT

Excessive inflammatory responses induced upon SARS-CoV-2 infection are associated with severe symptoms of COVID-19. Inflammasomes activated in response to SARS-CoV-2 infection are also associated with COVID-19 severity. Here, we show a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. N protein facilitates maturation of proinflammatory cytokines and induces proinflammatory responses in cultured cells and mice. Mechanistically, N protein interacts directly with NLRP3 protein, promotes the binding of NLRP3 with ASC, and facilitates NLRP3 inflammasome assembly. More importantly, N protein aggravates lung injury, accelerates death in sepsis and acute inflammation mouse models, and promotes IL-1ß and IL-6 activation in mice. Notably, N-induced lung injury and cytokine production are blocked by MCC950 (a specific inhibitor of NLRP3) and Ac-YVAD-cmk (an inhibitor of caspase-1). Therefore, this study reveals a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/virology , Cells, Cultured , Cytokines/metabolism , HEK293 Cells , Humans , Inflammasomes/genetics , Lung Injury/genetics , Lung Injury/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphoproteins/metabolism , Protein Binding , SARS-CoV-2/physiology , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL